A positively charged ball hangs from a silk thread. We put a positive test charge ${q_0}$ at a point and measure $F/{q_0}$, then it can be predicted that the electric field strength $E$
$ > F/{q_0}$
$ = F/{q_0}$
$ < F/{q_0}$
Cannot be estimated
An electron experiences a force equal to its weight when placed in an electric field. The intensity of the field will be
The charge distribution along the semi-circular arc is non-uniform . Charge per unit length $\lambda $ is given as $\lambda = {\lambda _0}\sin \theta $ , with $\theta $ measured as shown in figure. $\lambda_0$ is a positive constant. The radius of arc is $R$ . The electric field at the center $P$ of semi-circular arc is $E_1$ . The value of $\frac{{{\lambda _0}}}{{{ \in _0}{E_1}R}}$ is
Two equal negative charges $-\, q$ each are fixed at the points $(0, a)$ and $(0, -a)$ on the $Y$ -axis. A positive charge $Q$ is released from rest at the point $(2a, 0)$ on the $X$ -axis. The charge $Q$ will :-
The distance between a proton and electron both having a charge $1.6 \times {10^{ - 19}}\,coulomb$, of a hydrogen atom is ${10^{ - 10}}\,metre$. The value of intensity of electric field produced on electron due to proton will be
If the net electric field at point $\mathrm{P}$ along $\mathrm{Y}$ axis is zero, then the ratio of $\left|\frac{q_2}{q_3}\right|$ is $\frac{8}{5 \sqrt{x}}$, where $\mathrm{x}=$. . . . . .