A positively charged ball hangs from a silk thread. We put a positive test charge ${q_0}$ at a point and measure $F/{q_0}$, then it can be predicted that the electric field strength $E$

  • A

    $ > F/{q_0}$

  • B

    $ = F/{q_0}$

  • C

    $ < F/{q_0}$

  • D

    Cannot be estimated

Similar Questions

An electron experiences a force equal to its weight when placed in an electric field. The intensity of the field will be

The charge distribution along the semi-circular arc is non-uniform . Charge per unit length $\lambda $ is given as $\lambda  = {\lambda _0}\sin \theta $ , with $\theta $ measured as shown in figure. $\lambda_0$ is a positive constant. The radius of arc is $R$ . The electric field at the center $P$ of semi-circular arc is $E_1$ . The value of $\frac{{{\lambda _0}}}{{{ \in _0}{E_1}R}}$ is

Two equal negative charges $-\, q$ each are fixed at the points $(0, a)$ and $(0, -a)$ on the $Y$ -axis. A positive charge $Q$ is released from rest at the point $(2a, 0)$ on the $X$ -axis. The charge $Q$ will :-

The distance between a proton and electron both having a charge $1.6 \times {10^{ - 19}}\,coulomb$, of a hydrogen atom is ${10^{ - 10}}\,metre$. The value of intensity of electric field produced on electron due to proton will be

If the net electric field at point $\mathrm{P}$ along $\mathrm{Y}$ axis is zero, then the ratio of $\left|\frac{q_2}{q_3}\right|$ is $\frac{8}{5 \sqrt{x}}$, where $\mathrm{x}=$. . . . . .

  • [JEE MAIN 2024]