Factorise
$27 x^{3}-y^{3}+64 z^{3}+36 x y z$
Without actually calculating the cubes, find the value of each of the following
$\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{3}\right)^{3}-\left(\frac{5}{6}\right)^{3}$
$x+1$ is a factor of the polynomial
If $x+2$ is a factor of $x^{3}+a x^{2}-x+30,$ find the value of $a$.
Evaluate
$(98)^{2}$