Factorise the following:
$16 x^{2}+4 y^{2}+9 z^{2}-16 x y-12 y z+24 x z$
$16 x^{2}+4 y^{2}+9 z^{2}-16 x y-12 y z+24 x$
$=(4 x)^{2}+(-2 y)^{2}+(3 z)^{2}+2(4 x)(-2 y)+2(-2 y)(3 z)+2(3 z)(4 x)$
$=\{4 x+(-2 y)+3 z\}^{2}\left[\because a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a=(a+b+c)^{2}\right]$
$=(4 x-2 y+3 z)^{2}$
$=(4 x-2 y+3 z)(4 x-2 y+3 z)$
Write the following cubes in expanded form
$(2 x+7)^{3}$
Check whether $p(x)$ is a multiple of $g(x)$ or not :
$p(x)=2 x^{3}-11 x^{2}-4 x+5, \quad g(x)=2 x+1$
Find the zero of the polynomial in each of the following cases
$q(y)=\pi y+3.14$
Expand
$(2 a+3 b)^{2}$
Factorise the following:
$1-64 a^{3}-12 a+48 a^{2}$