Factorise the following:

$9 x^{2}+4 y^{2}+16 z^{2}+12 x y-16 y z-24 x z$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We have,

$9 x^{2}+4 y^{2}+16 z^{2}+12 x y-16 y z-24 x z$

$=(3 x)^{2}+(2 y)^{2}+(-4 z)^{2}+2(3 x)(2 y)+2(2 y)(-4 z)+2(-4 z)(3 x)$

$=\{3 x+2 y+(-4 z)\}^{2}\left[\because a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a=(a+b+c)^{2}\right]$

$=(3 x+2 y-4 z)^{2}=(3 x+2 y-4 z)(3 x+2 y-4 z)$

Similar Questions

With the help of the remainder theorem, find the remainder when the polynomial $x^{3}+x^{2}-26 x+24$ is divided by each of the following divisors

$x+6$

Expand the following:

$(-x+2 y-3 z)^{2}$

Factorise

$\frac{4 x^{2}}{9}-\frac{1}{25}$

On dividing $x^{3}+a x^{2}+19 x+20$ by $(x+3),$ if the remainder is $a,$ then find the value of $a$.

Factorise the following:

$\left(2 x+\frac{1}{3}\right)^{2}-\left(x-\frac{1}{2}\right)^{2}$