Factorise the following:

$\left(2 x+\frac{1}{3}\right)^{2}-\left(x-\frac{1}{2}\right)^{2}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\left(2 x+\frac{1}{3}\right)^{2}-\left(x-\frac{1}{2}\right)^{2}$

Using identity $a^{2}-b^{2}=(a+b)(a-b)$

$=\left[\left(2 x+\frac{1}{3}\right)+\left(x-\frac{1}{2}\right)\right]\left[\left(2 x+\frac{1}{3}\right)-\left(x-\frac{1}{2}\right)\right]$

$=\left(2 x+\frac{1}{3}+x-\frac{1}{2}\right)\left(2 x+\frac{1}{3}-x+\frac{1}{2}\right)=\left(3 x-\frac{1}{6}\right)\left(x+\frac{5}{6}\right)$

Similar Questions

Factorise the following quadratic polynomials by splitting the middle term

$x^{2}+10 x+16$

Give possible expressions for the length and breadth of the rectangle whose area is given by $4 a^{2}+4 a-3$

Factorise :

$2 x^{3}-3 x^{2}-17 x+30$

For what value of $m$ is $x^{3}-2 m x^{2}+16$ divisible by $x+2 ?$

Write the coefficient of $x^{2}$ in the following polynomials

$\sqrt{3} x^{2}+11$