Check whether $7+3 x$ is a factor of $3 x^{3}+7 x$.
Use the Factor Theorem to determine whether $g(x)$ is a factor of $p(x)$ in each of the following cases : $p(x)=2 x^{3}+x^{2}-2 x-1$, $g(x)=x+1$.
Without actually calculating the cubes, find the value of each of the following : $(-12)^{3}+(7)^{3}+(5)^{3}$
Factorise : $49 a^{2}+70 a b+25 b^{2}$
Expand each of the following, using suitable identities : $(x+2 y+4 z)^{2}$