Factorise the following using appropriate identities :$x^{2}-\frac{y^{2}}{100}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We have $x ^{2}-\frac{ y ^{2}}{100} =( x )^{2}-\left(\frac{ y }{10}\right)^{2}$

$=\left( x +\frac{ y }{10}\right)\left( x -\frac{ y }{10}\right)$           $\left[\right.$ Using $\left.a^{2}-b^{2}=(a+b)(a-b)\right]$

Similar Questions

Check whether $7+3 x$ is a factor of $3 x^{3}+7 x$.

Use the Factor Theorem to determine whether $g(x)$ is a factor of $p(x)$ in each of the following cases :  $p(x)=2 x^{3}+x^{2}-2 x-1$, $g(x)=x+1$.

Without actually calculating the cubes, find the value of each of the following : $(-12)^{3}+(7)^{3}+(5)^{3}$

Factorise : $49 a^{2}+70 a b+25 b^{2}$

Expand each of the following, using suitable identities : $(x+2 y+4 z)^{2}$