Check whether $7+3 x$ is a factor of $3 x^{3}+7 x$.
We have $p ( x )=3 x ^{3}+7 x$ and zero of $7+3 x$ is $\frac{-7}{3}$
$\left[\because 7+3 x=0 \Rightarrow x=\frac{-7}{3}\right]$
$\therefore $ $p \left(\frac{-7}{3}\right)=3\left(\frac{-7}{3}\right)^{3}+7\left(\frac{-7}{3}\right)=3\left(\frac{-343}{27}\right)+\left(\frac{-49}{3}\right)=-\frac{343}{9}-\frac{49}{3}=\frac{-490}{9}$
Since $\left(\frac{-490}{9}\right) \neq 0$
i.e. the remainder is not $0$ .
$\therefore 3 x ^{3}-7 x$ is not divisible by $7+3 x$.
Thus, $(7+3 x)$ is not a factor of $3 x^{3}-7 x$.
Factorise : $x^{3}+13 x^{2}+32 x+20$
Write the following cubes in expanded form : $(2 x+1)^{3}$
Verify : $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$
Factorise : $3 x^{2}-x-4$
Find the remainder when $x^{3}+3 x^{2}+3 x+1$ is divided by $5+2 x$.