Factorise $: x^{3}-x^{2}-17 x-15$
The sum of the coefficients of odd power
terms of $x=1-17=-16$.
The sum of the coefficients of the even power
terms of $x=-1-15=-16$.
Hence, $(x+1)$ is a factor of $p(x)$
$x^{3}-x^{2}-17 x-15$
$=\underline{x^{3}+x^{2}}-\underline{2 x^{2}-2 x}-\underline{15 x-15}$
[Splitting the terms to get $x+1$ as a factor]
$=x^{2}(x+1)-2 x(x+1)-15(x+1)$
$=(x+1)\left(x^{2}-2 x-15\right)$
$=(x+1)\left(x^{2}-5 x+3 x-15\right)$
[By splitting the middle term]
$=(x+1)[x(x-5)+3(x-5)]$
$=(x+1)(x-5)(x+3)$
$\sqrt{2}$ is a polynomial of degree
Is $(x-1)$ is a factor of $3 x^{2}+7 x-10 ?$
Find $p(0), p(1), p(-2)$ for the following polynomials:
$p(y)=(y+2)(y-2)$
Evaluate the following products without multiplying directly
$78 \times 84$
Write the degree of each of the following polynomials
$x^{8}-6561$