Factorise $10 x^{2}-x-24$ by splitting the middle term.
If we can find two numbers $p$ and $q$ such that $p+q=-1$ and
$p q=(10)(-24)=-240,$ then we can get the factors.
$p=15$ and $q=-16$ satisfy $p+q=1$ and $p q=-240$
So, $10 x^{2}-x-24$
$=10 x^{2}+15 x-16 x-24$
$=5 x(2 x+3)-8(2 x+3)$
$=(2 x+3)(5 x-8)$
$10 \times(-24)=-240$
$(-240)=15 \times(-16)$
$15+(-16)=-1$
Check whether $p(x)$ is a multiple of $g(x)$ or not :
$p(x)=2 x^{3}-11 x^{2}-4 x+5, \quad g(x)=2 x+1$
Check whether $p(x)$ is a multiple of $g(x)$ or not :
$p(x)=x^{3}-5 x^{2}+4 x-3, \quad g(x)=x-2$
For the polynomial $p(x)=x^{2}-7 x+12$ $p(2)=\ldots \ldots . .$
By remainder Theorem find the remainder, when $p(x)$ is divided by $g(x),$ where
$p(x)=x^{3}-6 x^{2}+2 x-4, \quad g(x)=1-\frac{3}{2} x$
By remainder Theorem find the remainder, when $p(x)$ is divided by $g(x),$ where
$p(x)=4 x^{3}-12 x^{2}+14 x-3, g(x)=2 x-1$