Check whether $p(x)$ is a multiple of $g(x)$ or not :

$p(x)=x^{3}-5 x^{2}+4 x-3, \quad g(x)=x-2$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$p ( x )$ will be a multiple $g ( x )$ if $g ( x )$ divides $p ( x )$

Now, $g(x)=x-2$ gives $x=2$

Remainder $=p(2)=(2)^{3}-5(2)^{2}+4(2)-3$

$=8-5(4)+8-3=8-20+8-3$

$=-7$

since remainder $\neq 0,$

So $p ( x )$ is not a multiple of $g ( x )$

Similar Questions

Expand

$(3 x+5)^{2}$

Degree of the zero degree polynomial is

Classify the following as linear, quadratic or cubic polynomial

$4 x^{2}-49$

Find the quotient and the remainder when $2 x^{2}-7 x-15$ is divided by

$2 x+1$

Determine the degree of each of the following polynomials:

$-10$