किसी विद्युत क्षेत्र का व्यंजक $\overrightarrow{\mathrm{E}}=4000 x^2 \hat{\mathrm{i}} \frac{\mathrm{V}}{\mathrm{m}}$ है। $20 \mathrm{~cm}$ भुजा वाले घन से गुजरने वाला वैद्युत फ्लक्स (चित्र में दर्शाये अनुसार)____________ $\mathrm{V} \mathrm{cm}$ है।
$640$
$689$
$652$
$258$
एक वर्ग $($भुजा $= L$ मी$)$ कागज के तल में है। एक वैधुत क्षेत्र $E$ कागज के तल में है तथा आधा वर्ग घेरता है। तो पृष्ठ से निकलने वाला वैधुत फ्लक्स होगा :-
एक घन के अन्दर $e$ परिमाण के आवेश वाले $8$ द्विध्रुव रखे हैं। घन से निर्गत कुल विद्युत फ्लक्स का मान होगा
किसी लम्बे बेलनाकार कोश के ऊपरी भाग में धनात्मक पृष्ठ आवेश $\sigma$ तथा निचले भाग में ऋर्णात्मक पृष्ठ आवेश $-\sigma$ हैं। इस बेलन (सिलिन्डर) के चारों ओर विघुत क्षेत्र-रेखायें, यहाँ दर्शाये गये आरेखों में से किस आरेख के समान होंगी ?
(यह आरेख कंवल व्यवस्था आरेख है और स्कंल के अनुसार नहीं है )
एक घनाकार क्षेत्र की भुजा $a$ और केन्द्र उद्गम पर हैं। इसमें तीन बिन्दु आवेश रख है : $+3 q (0,0,0)$ पर, $- q (0,- a / 4,0)$ पर और $- q (0,+ a / 4,0)$ । सही विकल्प (विकल्पों का चुनाव करें।
$(A)$ $x =+\frac{ a }{2}$ तल से गुजर रहा कुल विधुत-फ्लक्स, $x =-\frac{ a }{2}$ तल से गुजर रहे कुल विधुत-फ्लक्स के बराबर है।
$(B)$ $y=+\frac{a}{2}$ तल से गुजर रहा कुल विधुत-फ्लक्स, $y=-\frac{a}{2}$ तल से गुजर रहे कुल विधुत-फ्लक्स से अधिक है।
$(C)$ पूरे घनाकर क्षेत्र से गुजर रहा कुल विधुत-फ्लक्स, $\frac{q}{\varepsilon_0}$ है।
$(D)$ $z=+\frac{a}{2}$ तल से गुजर रहा कुल विधुत-फ्लक्स, $x=+\frac{a}{2}$ तल से गुजर रहे कुल विधुत-फ्लक्स से बराबर है।
मुक्त आकाश में $z$-अक्ष के अनुदिश स्थित $8 \,nC / m$ के एकसमान रेखीय आवेश के प्रभाग में बिन्दु $x =3\, m$ पर पष्ठीय आवेश घनत्व ज्ञात कीजिए।