Express $0.12 \overline{3}$ in the form $\frac{p}{q},$ where $p$ and $q$ are integers and $q \neq 0$
$\frac{47}{300}$
$\frac{37}{300}$
$\frac{57}{300}$
$\frac{67}{300}$
Simplify:
$64^{-\frac{1}{3}} + 64^{\frac{1}{3}} - 64^{\frac{2}{3}}$
Simplify
$7^{\frac{1}{4}} \cdot 12^{\frac{1}{4}}$
Rationalise the denominator in each of the following
$\frac{18}{3 \sqrt{2}-2 \sqrt{3}}$
If $\sqrt{2}=1.414, \sqrt{3}=1.732,$ then find the value of $\frac{4}{3 \cdot \sqrt{3}-2 \cdot \sqrt{2}}+\frac{3}{3 \cdot \sqrt{3}+2 \cdot \sqrt{2}}$
Represent $\sqrt{5}$ on the number line.