Explain the effect of dielectric on capacitance of parallel plate capacitor and obtain the formula of dielectric constant.
Let us have two large plates each of area A separated by a distance $d$. The charge on the plates is $\pm \mathrm{Q}$ corresponding to the charge density $\pm \sigma$.
When there is vacuum between the plates,
$\mathrm{E}_{0}=\frac{\sigma}{\epsilon_{0}}$
and the potential difference $V_{0}$.
$\therefore \mathrm{V}_{0}=\mathrm{E}_{0} d$
If $\mathrm{C}_{0}$ is the capacitance,
$\mathrm{C}_{0}=\frac{\mathrm{Q}}{\mathrm{V}_{0}}$ $=\frac{\sigma \mathrm{A}}{\mathrm{E}_{0} d} \quad[\because \mathrm{Q}=\sigma \mathrm{A}]$ $\mathrm{C}_{0}=\frac{\epsilon_{0} \mathrm{~A}}{d} \quad \ldots(1)$ $\left[\because \mathrm{E}_{0}=\frac{\sigma}{\epsilon_{0}} \Rightarrow \epsilon_{0}=\frac{\sigma}{\mathrm{E}_{0}}\right]$
Consider a dielectric inserted between the plates fully occupying the intervening region. So, the dielectric is polarised by the field and surface charge density $\pm \sigma_{\mathrm{P}}$ arise on the plates.
Hence, electric field between two plates,
$\mathrm{E}=\mathrm{E}_{0}-\mathrm{E}_{\mathrm{P}}$ $\therefore \mathrm{E}=\frac{\sigma}{\epsilon_{0}}-\frac{\sigma_{\mathrm{P}}}{\epsilon_{0}} \quad\left[\because \mathrm{E}_{\mathrm{P}}=\frac{\sigma_{\mathrm{P}}}{\epsilon_{0}}\right]$ $\therefore \mathrm{E}=\frac{\sigma-\sigma_{\mathrm{P}}}{\epsilon_{0}}$ and electric potential difference,
$\mathrm{V}=\mathrm{E} d$
$=\frac{\sigma-\sigma_{\mathrm{p}}}{\epsilon_{0}} \cdot d$
For linear dielectric $\sigma$ is proportional to $\mathrm{E}_{0}$. Hence $\sigma-\sigma_{\mathrm{P}}$ is also proportional to $\mathrm{E}$, so we can write $\sigma-\sigma_{\mathrm{P}}=\frac{\sigma}{\mathrm{K}}$
Where $K$ is a constant characteristic of dielectric.
$\therefore \mathrm{V}=\frac{\sigma d}{\epsilon_{0} \mathrm{~K}}=\frac{\mathrm{Q} d}{\mathrm{~A} \in_{0} \mathrm{~K}} \quad\left[\because \sigma=\frac{\mathrm{Q}}{\mathrm{A}}\right]$
The capacitance with dielectric between the plate is then,
$\mathrm{C}=\frac{\mathrm{Q}}{\mathrm{V}}=\frac{\mathrm{A} \in_{0} \mathrm{~K}}{d}=\mathrm{K} \frac{\mathrm{A} \in_{0}}{d}$
$\therefore \mathrm{C}=\mathrm{KC}_{0}$
$\quad \ldots \text { (2) from equation (1) }$
The capacitance of an air capacitor is $15\,\mu F$ the separation between the parallel plates is $6\,mm$. A copper plate of $3\,mm$ thickness is introduced symmetrically between the plates. The capacitance now becomes.........$\mu F$
Between the plates of a parallel plate capacitor a dielectric plate is introduced just to fill the space between the plates. The capacitor is charged and later disconnected from the battery. The dielectric plate is slowly drawn out of the capacitor parallel to the plates. The plot of the potential difference across the plates and the length of the dielectric plate drawn out is
Two identical parallel plate capacitors of capacitance $C$ each are connected in series with a battery of emf, $E$ as shown below. If one of the capacitors is now filled with a dielectric of dielectric constant $k$, then the amount of charge which will flow through the battery is (neglect internal resistance of the battery)
Match the pairs
Capacitor | Capacitance |
$(A)$ Cylindrical capacitor | $(i)$ ${4\pi { \in _0}R}$ |
$(B)$ Spherical capacitor | $(ii)$ $\frac{{KA{ \in _0}}}{d}$ |
$(C)$ Parallel plate capacitor having dielectric between its plates | $(iii)$ $\frac{{2\pi{ \in _0}\ell }}{{ln\left( {{r_2}/{r_1}} \right)}}$ |
$(D)$ Isolated spherical conductor | $(iv)$ $\frac{{4\pi { \in _0}{r_1}{r_2}}}{{{r_2} - {r_1}}}$ |
A parallel plate condenser is filled with two dielectrics as shown. Area of each plate is $A\;metr{e^2}$ and the separation is $t$ $metre$. The dielectric constants are ${k_1}$ and ${k_2}$ respectively. Its capacitance in farad will be