The capacitance of an air capacitor is $15\,\mu F$ the separation between the parallel plates is $6\,mm$. A copper plate of $3\,mm$ thickness is introduced symmetrically between the plates. The capacitance now becomes.........$\mu F$

  • A

    $5$

  • B

    $7.5$

  • C

    $22.5$

  • D

    $30$

Similar Questions

A parallel plate capacitor is charged to a potential difference of $100\,V$ and disconnected from the source of $emf$ . A slab of dielectric is then inserted between the plates. Which of the following three quantities change?

$(i)$  The potential difference

$(ii)$ The capacitance

$(iii)$ The charge on the plates

What is dielectric ?

A medium having dielectric constant $K>1$ fills the space between the plates of a parallel plate capacitor. The plates have large area, and the distance between them is $d$. The capacitor is connected to a battery of voltage $V$. as shown in Figure ($a$). Now, both the plates are moved by a distance of $\frac{d}{2}$ from their original positions, as shown in Figure ($b$).

In the process of going from the configuration depicted in Figure ($a$) to that in Figure ($b$), which of the following statement($s$) is(are) correct?

  • [IIT 2022]

A parallel plate capacitor has capacitance $C$. If it is equally filled with parallel layers of materials of dielectric constants $K_1$ and $K_2$ its capacity becomes $C_1$. The ratio of $C_1$ to $C$ is

In a parallel plate capacitor with air between the plates, each plate has an area of $6 \times 10^{-3}\; m ^{2}$ and the distance between the plates is $3 \;mm$ the capacitance of the capacitor is $17.71 \;pF$. If this capacitor is connected to a $100\; V$ supply, $3\; mm$ thick mica sheet (of dielectric constant $=6$ ) were inserted between the plates,

$(a)$ while the voltage supply remained connected.

$(b)$ after the supply was disconnected.