Between the plates of a parallel plate capacitor a dielectric plate is introduced just to fill the space between the plates. The capacitor is charged and later disconnected from the battery. The dielectric plate is slowly drawn out of the capacitor parallel to the plates. The plot of the potential difference across the plates and the length of the dielectric plate drawn out is

  • A
    116-a8
  • B
    116-b8
  • C
    116-c8
  • D
    116-d8

Similar Questions

If the distance between parallel plates of a capacitor is halved and dielectric constant is doubled then the capacitance will become

Two capacitors, each having capacitance $40\,\mu F$ are connected in series. The space between one of the capacitors is filled with dielectric material of dielectric constant $K$ such that the equivalence capacitance of the system became $24\,\mu F$. The value of $K$ will be.

  • [JEE MAIN 2022]

A slab of material of dielectric constant $K$ has the same area as the plates of a parallel-plate capacitor but has a thickness $(3/4)d$, where $d$ is the separation of the plates. How is the capacitance changed when the slab is inserted between the plates?

A capacitor is half filled with a dielectric $(K=2)$ as shown in figure A. If the same capacitor is to be filled with same dielectric as shown, what would be the thickness of dielectric so that capacitor still has same capacity?

A parallel plate air capacitor of capacitance $C$ is connected to a cell of emf $V$ and then disconnected from it. A dielectric slab of dielectric constant $K,$ which can just fill the air gap of the capacitor, is now inserted in it. Which of the following is incorrect $?$

  • [AIPMT 2015]