Examine whether $2 x+3$ is a factor of $2 x^{3}+21 x^{2}+67 x+60$ or not.
The zero of $2 x+3$ is $\left(-\frac{3}{2}\right)$
Now, $p(x)=2 x^{3}+21 x^{2}+67 x+60$
$\therefore p\left(-\frac{3}{2}\right)=2\left(-\frac{3}{2}\right)^{3}+21\left(-\frac{3}{2}\right)^{2}+67\left(-\frac{3}{2}\right)+60$
$=2\left(-\frac{27}{8}\right)+21\left(\frac{9}{4}\right)-\frac{201}{2}+60$
$=-\frac{27}{4}+\frac{189}{4}-\frac{201}{2}+60$
$=\frac{-27+189-402+240}{4}$
$=\frac{-429+429}{4}=\frac{0}{4}$
$\therefore p\left(-\frac{3}{2}\right)=0$
So, by the factor theorem, $2 x+3$ is a factor of $2 x^{3}+21 x^{2}+67 x+60$.
Classify the following as a constant, linear,quadratic and cubic polynomials:
$2+x$
From the following polynomials find out which of them has $(x-1)$ as a factor
$x^{3}+6 x^{2}-9 x-14$
Check whether $p(x)$ is a multiple of $g(x)$ or not, where
$p(x)=x^{3}-x+1, \quad g(x)=2-3 x$
Factorise
$6 x^{3}+7 x^{2}-14 x-15$
Zero of the zero polynomial is