Check whether $p(x)$ is a multiple of $g(x)$ or not, where
$p(x)=x^{3}-x+1, \quad g(x)=2-3 x$
$p(x)$ will be a multiple of $g(x)$ if $g(x)$ divides $p(x)$
Now, $\quad g(x)=2-3 x=0$ gives $x=\frac{2}{3}$
Remainder $=p\left(\frac{2}{3}\right)=\left(\frac{2}{3}\right)^{3}-\left(\frac{2}{3}\right)+1$
$=\frac{8}{27}-\frac{2}{3}+1=\frac{17}{27}$
since remainder $\neq 0,$ So, $p(x)$ is not a multiple of $g(x)$.
Find the value of $a$, if $x-a$ is a factor of $x^{3}-a x^{2}+2 x+a-1$.
Factorise :
$2 x^{3}-3 x^{2}-17 x+30$
Find the value of each of the following polynomials at the indicated value of variables
$p(t)=5 t^{2}-11 t+7$ at $t=a$
Factorise $10 x^{2}-x-24$ by splitting the middle term.
Write the following cubes in expanded form
$(4 x-3 y)^{3}$