Evaluate:

$\frac{\sin ^{2} 63^{\circ}+\sin ^{2} 27^{\circ}}{\cos ^{2} 17^{\circ}+\cos ^{2} 73^{\circ}}$

  • A

    $0$

  • B

    $-1$

  • C

    $1$

  • D

    $0.5$

Similar Questions

In $\triangle$ $ABC,$ right-angled at $B$, $AB =5\, cm$ and $\angle ACB =30^{\circ}$ (see $Fig.$). Determine the lengths of the sides $BC$ and $AC .$

Given $15 \cot A =8,$ find $\sin A$ and $\sec A .$

Prove that

$\frac{\sin \theta-\cos \theta+1}{\sin \theta+\cos \theta-1}=\frac{1}{\sec \theta-\tan \theta},$ using the identity

$\sec ^{2} \theta=1+\tan ^{2} \theta$

In a right triangle $A B C$, right-angled at $B$. if $\tan A =1,$ then verify that $2 \sin A \cos A=1$

State whether the following are true or false. Justify your answer.

The value of $\cos \theta$ increases as $\theta$ increases