Evaluate the determinants
$\left|\begin{array}{ccc}
3 & -4 & 5 \\
1 & 1 & -2 \\
2 & 3 & 1
\end{array}\right|$
Let $A=\left[\begin{array}{ccc}3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1\end{array}\right]$
By expanding along the first row, we have:
$|A| = 3\left| {\begin{array}{*{20}{c}}
1&{ - 2} \\
3&1
\end{array}} \right| + 4\left| {\begin{array}{*{20}{c}}
1&{ - 2} \\
2&1
\end{array}} \right| + 5\left| {\begin{array}{*{20}{c}}
1&1 \\
2&3
\end{array}} \right|$
$ = 3(1 + 6) + 4(1 + 4) + 5(3 - 2)$
$ = 3(7) + 4(5) + 5(1)$
$ = 21 + 20 + 5 = 46$
For the system of linear equations
$2 x+4 y+2 a z=b$
$x+2 y+3 z=4$
$2 x-5 y+2 z=8$
which of the following is NOT correct?
Which of the following is correct?
Let the system of linear equations $4 x+\lambda y+2 z=0$ ; $2 x-y+z=0$ ; $\mu x +2 y +3 z =0, \lambda, \mu \in R$ has a non-trivial solution. Then which of the following is true?
If $\left| {\,\begin{array}{*{20}{c}}1&k&3\\3&k&{ - 2}\\2&3&{ - 1}\end{array}\,} \right| = 0$,then the value of $ k $ is
Let $[\lambda]$ be the greatest integer less than or equal to $\lambda$. The set of all values of $\lambda$ for which the system of linear equations $x+y+z=4,3 x+2 y+5 z=3$ $9 x+4 y+(28+[\lambda]) z=[\lambda]$ has a solution is: