Evaluate the determinants

$\left|\begin{array}{ccc}
3 & -4 & 5 \\
1 & 1 & -2 \\
2 & 3 & 1
\end{array}\right|$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $A=\left[\begin{array}{ccc}3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1\end{array}\right]$

By expanding along the first row, we have:

$|A| = 3\left| {\begin{array}{*{20}{c}}
  1&{ - 2} \\ 
  3&1 
\end{array}} \right| + 4\left| {\begin{array}{*{20}{c}}
  1&{ - 2} \\ 
  2&1 
\end{array}} \right| + 5\left| {\begin{array}{*{20}{c}}
  1&1 \\ 
  2&3 
\end{array}} \right|$

$ = 3(1 + 6) + 4(1 + 4) + 5(3 - 2)$

$ = 3(7) + 4(5) + 5(1)$

$ = 21 + 20 + 5 = 46$

Similar Questions

For the system of linear equations

$2 x+4 y+2 a z=b$

$x+2 y+3 z=4$

$2 x-5 y+2 z=8$

which of the following is NOT correct?

  • [JEE MAIN 2023]

Which of the following is correct?

Let the system of linear equations $4 x+\lambda y+2 z=0$ ;  $2 x-y+z=0$ ;  $\mu x +2 y +3 z =0, \lambda, \mu \in R$ has a non-trivial solution. Then which of the following is true?

  • [JEE MAIN 2021]

If $\left| {\,\begin{array}{*{20}{c}}1&k&3\\3&k&{ - 2}\\2&3&{ - 1}\end{array}\,} \right| = 0$,then the value of $ k $ is

  • [IIT 1979]

Let $[\lambda]$ be the greatest integer less than or equal to $\lambda$. The set of all values of $\lambda$ for which the system of linear equations $x+y+z=4,3 x+2 y+5 z=3$ $9 x+4 y+(28+[\lambda]) z=[\lambda]$ has a solution is:

  • [JEE MAIN 2021]