$\Delta=\left|\begin{array}{ccc}0 & \sin \alpha & -\cos \alpha \\ -\sin \alpha & 0 & \sin \beta \\ \cos \alpha & -\sin \beta & 0\end{array}\right|$ का मान ज्ञात कीजिए।
Expanding along $\mathrm{R}_{1},$ we get
$\Delta {\text{ }} = 0\left| {\begin{array}{*{20}{c}}
0&{\sin \beta } \\
{ - \sin \beta }&0
\end{array}} \right| - \sin \alpha \left| {\begin{array}{*{20}{c}}
{ - \sin \alpha }&{\sin \beta } \\
{\cos \alpha }&0
\end{array}} \right| - \cos \alpha \left| {\begin{array}{*{20}{c}}
{ - \sin \alpha }&0 \\
{\cos \alpha }&{ - \sin \beta }
\end{array}} \right|$
$=0-\sin \alpha(0-\sin \beta \cos \alpha)-\cos \alpha(\sin \alpha \sin \beta-0)$
$=\sin \alpha \sin \beta \cos \alpha-\cos \alpha \sin \alpha \sin \beta=0$
यदि $A =\left[\begin{array}{ccc}1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9\end{array}\right],$ हो तो $| A |$ ज्ञात कीजिए।
अंतराल $-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}$ में, $\left|\begin{array}{lll}\sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x\end{array}\right|=0$ के भिन्न वास्तविक मूलों की संख्या है
समीकरण $\left| {\,\begin{array}{*{20}{c}}1&1&x\\{p + 1}&{p + 1}&{p + x}\\3&{x + 1}&{x + 2}\end{array}\,} \right| = 0$ के हल हैं
यदि रेखीय समीकरण निकाय
$2 x + y - z =7$
$x -3 y +2 z =1$
$x +4 y +\delta z = k$ है, जहाँ $\delta, k \in R$ के अनंत हल है, तो $\delta+ k$ बराबर है :
यदि $\left| {\,\begin{array}{*{20}{c}}{x + 1}&3&5\\2&{x + 2}&5\\2&3&{x + 4}\end{array}\,} \right| = 0$,तो समीकरण $x =$