Draw an equipotential surface for dipole.
Figure shows a set of equipotential surfaces. The magnitude and direction of electric field that exists in the region is .........
Draw an equipotential surface for an uniform electric field.
A uniformly charged solid sphere of radius $R$ has potential $V_0$ (measured with respect to $\infty$) on its surface. For this sphere the equipotential surfaces with potentials $\frac{{3{V_0}}}{2},\;\frac{{5{V_0}}}{4},\;\frac{{3{V_0}}}{4}$ and $\frac{{{V_0}}}{4}$ have rasius $R_1,R_2,R_3$ and $R_4$ respectively. Then
This question has Statement $-1$ and Statement $-2$ Of the four choices given after the Statements, choose the one that best describes the two Statements
Statement $1$ : No work is required to be done to move a test charge between any two points on an equipotential surface
Statement $2$ : Electric lines of force at the equipotential surfaces are mutually perpendicular to each other
Electric field is always ...... to the equipotential surface at every point. (Fill in the gap)