Electric field is always ...... to the equipotential surface at every point. (Fill in the gap)

Similar Questions

Draw an equipotential surface for dipole.

Two point charges of magnitude $+q$ and $-q$ are placed at $\left( { - \frac{d}{2},0,0} \right)$ and $\left( {\frac{d}{2},0,0} \right)$, respectively. Find the equation of the equipotential surface where the potential is zero.

A uniform electric field pointing in positive $x$-direction exists in a region. Let $A$ be the origin, $B$ be the point on the $x$-axis at $x = + 1$ $cm$ and $C$ be the point on the $y$-axis at $y = + 1\,cm$. Then the potentials at the points $A$, $B$ and $C$ satisfy

  • [IIT 2001]

Which of the following figure shows the correct equipotential surfaces of a system of two positive charges?

  • [AIIMS 2017]

What is an equipotential surface ? Draw an equipotential surfaces for a

$(1)$ single point charge

$(2)$ charge $+ \mathrm{q}$ and $- \mathrm{q}$ at few distance (dipole)

$(3)$ two $+ \mathrm{q}$ charges at few distance

$(4)$ uniform electric field.