Domain of the function $f(x) =$ $\frac{1}{{\sqrt {\ln \,{{\cot }^{ - 1}}x} }}$ is

  • A

    $(cot\,\,1 , \infty )$

  • B

    $R - \{cot\,\,1\}$

  • C

    $(- \infty ,0) \cup (0,cot\,\,1)$

  • D

    $(- \infty , cot\,\,1)$

Similar Questions

Let $A=\{1,3,7,9,11\}$ and $B=\{2,4,5,7,8,10,12\}$. Then the total number of one-one maps $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$, such that $\mathrm{f}(1)+\mathrm{f}(3)=14$, is :

  • [JEE MAIN 2024]

Show that the function $f: N \rightarrow N$ given by $f(x)=2 x,$ is one-one but not onto.

Consider a function $f:\left[0, \frac{\pi}{2}\right]$ $ \rightarrow$ $R$ given by $f(x)=\sin x$ and $g:\left[0, \frac{\pi}{2}\right] $ $\rightarrow$ $R$ given by $g(x)=\cos x .$ Show that $f$ and $g$ are one-one, but $f\,+\,g$ is not one-one.

Define a function $f(x)=\frac{16 x^2-96 x+153}{x-3}$ for all real $x \neq 3$. The least positive value of $f(x)$ is

  • [KVPY 2017]

If $f(x) = \frac{{\alpha x}}{{x + 1}},x \ne - 1$, for what value of $\alpha $ is $f(f(x)) = x$