Domain of the function $f(x) =$ $\frac{1}{{\sqrt {\ln \,{{\cot }^{ - 1}}x} }}$ is
$(cot\,\,1 , \infty )$
$R - \{cot\,\,1\}$
$(- \infty ,0) \cup (0,cot\,\,1)$
$(- \infty , cot\,\,1)$
Let $A=\{1,3,7,9,11\}$ and $B=\{2,4,5,7,8,10,12\}$. Then the total number of one-one maps $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$, such that $\mathrm{f}(1)+\mathrm{f}(3)=14$, is :
Show that the function $f: N \rightarrow N$ given by $f(x)=2 x,$ is one-one but not onto.
Consider a function $f:\left[0, \frac{\pi}{2}\right]$ $ \rightarrow$ $R$ given by $f(x)=\sin x$ and $g:\left[0, \frac{\pi}{2}\right] $ $\rightarrow$ $R$ given by $g(x)=\cos x .$ Show that $f$ and $g$ are one-one, but $f\,+\,g$ is not one-one.
Define a function $f(x)=\frac{16 x^2-96 x+153}{x-3}$ for all real $x \neq 3$. The least positive value of $f(x)$ is
If $f(x) = \frac{{\alpha x}}{{x + 1}},x \ne - 1$, for what value of $\alpha $ is $f(f(x)) = x$