Define a function $f(x)=\frac{16 x^2-96 x+153}{x-3}$ for all real $x \neq 3$. The least positive value of $f(x)$ is
$16$
$18$
$22$
$24$
Let $f: R \rightarrow R$ be a function defined $f(x)=\frac{2 e^{2 x}}{e^{2 x}+\varepsilon}$. Then $f\left(\frac{1}{100}\right)+f\left(\frac{2}{100}\right)+f\left(\frac{3}{100}\right)+\ldots .+f\left(\frac{99}{100}\right)$ is equal to
Let $f ( x )$ be a quadratic polynomial with leading coefficient $1$ such that $f(0)=p, p \neq 0$ and $f(1)=\frac{1}{3}$. If the equation $f(x)=0$ and $fofofof (x)=0$ have a common real root, then $f(-3)$ is equal to $........$
The domain of the function $f(x) = \frac{{{{\sin }^{ - 1}}(3 - x)}}{{\ln (|x|\; - 2)}}$ is
Let $f(x ) = x^3 - 2x + 2$. If real numbers $a$, $b$ and $c$ such that $\left| {f\left( a \right)} \right| + \left| {f\left( b \right)} \right| + \left| {f\left( c \right)} \right| = 0$ then the value of ${f^2}\left( {{a^2} + \frac{2}{a}} \right) + {f^2}\left( {{b^2} + \frac{2}{b}} \right) - {f^2}\left( {{c^2} + \frac{2}{c}} \right)$ equal to
Let $f : R \to R$ be a function defined by $f(x) = - \frac{{|x{|^3} + |x|}}{{1 + {x^2}}}$; then the graph of $f(x)$ is lies in the :-