Let $A=\{1,3,7,9,11\}$ and $B=\{2,4,5,7,8,10,12\}$. Then the total number of one-one maps $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$, such that $\mathrm{f}(1)+\mathrm{f}(3)=14$, is :
$180$
$120$
$480$
$240$
The range of $f(x) = [\cos x + \sin x]$ is (Where $[.]$ is $G.I.F.$)
Let $f(x)=a x^{2}+b x+c$ be such that $f(1)=3, f(-2)$ $=\lambda$ and $f (3)=4$. If $f (0)+ f (1)+ f (-2)+ f (3)=14$, then $\lambda$ is equal to$...$
If $f$ is an even function defined on the interval $(-5, 5)$, then four real values of $x$ satisfying the equation $f(x) = f\left( {\frac{{x + 1}}{{x + 2}}} \right)$ are
If $x \in [0, 1]$, then the number of solution $(s)$ of the equation $2[cos^{-1}x] + 6[sgn(sinx)] = 3$ is (where $[.]$ denotes greatest integer function and sgn $(x)$ denotes signum function of $x$)-
If $f(x) = 2\sin x$, $g(x) = {\cos ^2}x$, then $(f + g)\left( {\frac{\pi }{3}} \right) = $