ड्यूट्रॉन तथा $\alpha - $कण वायु में $1\,{\mathop A\limits^o }$ की दूरी पर हैं। ड्यूट्रॉन के कारण $\alpha - $ कण पर कार्य करने वाली विद्युत क्षेत्र की तीव्रता का परिमाण होगा
शून्य
$2.88 \times {10^{11}}\,$ न्यूटन/कूलॉम
$1.44 \times {10^{11}}\,$ न्यूटन/कूलॉम
$5.76 \times {10^{11}}\,$ न्यूटन/कूलॉम
एक आवेश से $0.1\,m$ की दूरी पर विद्युत क्षेत्र $1\,N/C$ है। आवेश का परिमाण होगा
एक पेण्डुलम के गोलक का द्रव्यमान $30.7 \times {10^{ - 6}}\,kg$ है। एवं इस पर आवेश $2 \times {10^{ - 8}}\,C$ है। यह पेण्डुलम $20000\, V/m$ के एकसमान विद्युत क्षेत्र में संतुलन में है। पेण्डुलम के धागे में तनाव होगा $(g = 9.8\,m/{s^2})$
$30$ सेमी दूरी पर $2$ न्यूटन/कूलॉम मान का विद्युत क्षेत्र उत्पन करने वाले बिन्दु आवेश का मान क्या होगा
विद्युत क्षेत्र की तीव्रता का मात्रक है
समकोण त्रिभुज $OAB$ के बिन्दु $A$ तथा $B$ पर आवेश $Q _{1}$ तथा $Q _{2}$ रखे हैं (चित्र देखिये)। यदि बिन्दु $O$ पर वैधुत क्षेत्र कर्ण के लम्बवत् है तो आवेशों का अनुपात $Q_{1} / Q_{2}$ किसके समानुपाती होगा ?