Consider the two statements :
$(\mathrm{S} 1):(\mathrm{p} \rightarrow \mathrm{q}) \vee(\sim \mathrm{q} \rightarrow \mathrm{p})$ is a tautology
$(S2): (\mathrm{p} \wedge \sim \mathrm{q}) \wedge(\sim \mathrm{p} \vee \mathrm{q})$ is a fallacy.
Then :
only $(S1)$ is true.
both $(S1)$ and $(S2)$ are false.
both $(S1)$ and $(S2)$ are true.
only $(S2)$ is true.
Which of the following is not a statement
$\sim (p \vee q) \vee (\sim p \wedge q)$ is logically equivalent to
Let $F_{1}(A, B, C)=(A \wedge \sim B) \vee[\sim C \wedge(A \vee B)] \vee \sim A$ and $F _{2}( A , B )=( A \vee B ) \vee( B \rightarrow \sim A )$ be two logical expressions. Then ...... .
$( S 1)( p \Rightarrow q ) \vee( p \wedge(\sim q ))$ is a tautology $( S 2)((\sim p ) \Rightarrow(\sim q )) \wedge((\sim p ) \vee q )$ is a Contradiction. Then
Which of the following statements is $NOT$ logically equivalent to $\left( {p \to \sim p} \right) \to \left( {p \to q} \right)$?