तत्समक फलन $I _{N }: N \rightarrow N$ पर विचार कीजिए, जो $I _{ N }(x)=x, \forall x \in N$ द्वारा परिभाषित है। सिद्ध कीजिए कि, यद्यपि $I _{ N }$ आच्छादक है किंतु निम्नलिखित प्रकार से परिभाषित फलन $I _{ N }+ I _{ N }: N \rightarrow N$ आच्छादक नहीं है

$\left( I _{ N }+ I _{ N }\right)(x)= I _{ N }(x)+ I _{ N }(x)=x+x=2 x$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Clearly $I_{N}$ is onto. But $I_{N}+I_{N}$ is not onto, as we can find an element $3$ in the co-domain $N$ such that there does not exist any $x$ in the domain $N$ with $\left( I _{ N }+ I _{ N }\right)(x)=2 x=3$

Similar Questions

यदि $f(x)=\frac{2^{2 x}}{2^{2 x}+2}, x \in R$, है, तो $\mathrm{f}\left(\frac{1}{2023}\right)+\mathrm{f}\left(\frac{2}{2023}\right)+\ldots \ldots .+\mathrm{f}\left(\frac{2022}{2023}\right)$ बराबर है

  • [JEE MAIN 2023]

माना $\mathrm{R}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$ तथा $\mathrm{S}=\{1,2,3,4\}$ हैं। आच्छादक फलनों $f: R \rightarrow S$ जिनके लिये $f(a) \neq 1$ है, की कुल संख्या है

  • [JEE MAIN 2023]

मान लें कि $f: R \rightarrow R$ एक फलन निम्न प्रकार से परिभाषित किया गया है

$f(x)=\left\{\begin{array}{cl}\frac{\sin \left(x^2\right)}{x} & \text { if } x \neq 0, \\

0 & \text { if } x=0\end{array}\right.$

तब $x=0$ पर $f$

  • [KVPY 2019]

फलन $f(x) = {\sin ^{ - 1}}(1 + 3x + 2{x^2})$ का डोमेन (प्रान्त) है

$f(x)=\sin x$ द्वारा प्रदत्त फलन $f:\left[0, \frac{\pi}{2}\right] \rightarrow R$ तथा $g(x)=\cos x$ द्वारा प्रदत्त फलन $g:\left[0, \frac{\pi}{2}\right] \rightarrow R$ पर विचार कीजिए। सिद्ध कीजिए कि $f$ तथा $g$ एकैकी है, परंतु $f+g$ एकैकी नहीं है।