જો સમીકરણ ${x^2} + \alpha x + \beta  = 0$ ના બીજો $\alpha ,\beta $ એવા મળે કે જેથી $\alpha  \ne \beta $ અને અસમતા $\left| {\left| {y - \beta } \right| - \alpha } \right| < \alpha $ હોય તો 

  • A

     અસમતા એ $y$ ની બે પૂર્ણાક કિમતોથી સંતોષાય છે 

  • B

    અસમતાના બધા  ઉકેલો $y \in  (-4, 2)$ માં મળે 

  • C

    સમીકરણના ઉકેલો સમાન ચિહનોના છે 

  • D

    ${x^2} + \alpha x + \beta  > 0\,\forall \,x \in \,\left[ { - 1,0} \right]$

Similar Questions

જો $x\, = \,2\, + \,\sqrt 3 $ હોય, તો $x^3 - 7x^2 + 13x - 12$ નું મૂલ્ય કેટલું થાય ?

જો સમીકરણ $\frac{{{x^2} + 5}}{2} = x - 2\cos \left( {ax + b} \right)$ ને ઓછામાં ઓછા એક ઉકેલ મળે તો $(b + a)$ ની કિમત મેળવો 

સમીકરણ $3\left(x^2+\frac{1}{x^2}\right)-2\left(x+\frac{1}{x}\right)+5=0$ ના વાસ્તવિક ઉકેલોની સંખ્યા $.............$ છે.

  • [JEE MAIN 2023]

$'K'$ ની કેટલી ધન પૂર્ણાક કિમતો મળે કે જેથી સમીકરણ $k = \left| {x + \left| {2x - 1} \right|} \right| - \left| {x - \left| {2x - 1} \right|} \right|$ ને બરાબર ત્રણ વાસ્તવિક ઉકેલો મળે છે ? 

ધારો કે $A=\left\{x \in(0, \pi)-\left\{\frac{\pi}{2}\right\}: \log _{(2 / \pi)}|\sin x|+\log _{(2 / \pi)}|\cos x|=2\right\}$ અને $B=\{x \geq 0: \sqrt{x}(\sqrt{x}-4)-3|\sqrt{x}-2|+6=0\}$. તો $n(A \cup B)=$ _______. 

  • [JEE MAIN 2025]