यदि किसी आवेशित गोलीय चालक जिसकी त्रिज्या $10\,cm$ है के केन्द्र से $5\,cm$ की दूरी पर विभव $V$ है, तो इसके केन्द्र से $15\,cm$ दूरी पर विभव होगा
$\frac{1}{3}\,V$
$\frac{2}{3}\,V$
$\frac{3}{2}\,V$
$3\,V$
$L$ भुजा व $O$ केन्द्र वाले एक समबाहु षट्भुज के कोनों पर $6$ बिन्दु-आवेश चित्र में दर्शाये अनुरूप रखे है। $K =\frac{1}{4 \pi \varepsilon_0} \frac{ q }{ L ^2}$ को मानकर निर्धारित करें कि कौन प्रकथन सही है/हैं
$(A)$ $O$ पर विधुत क्षेत्र $6 K$ व $O D$ दिशा में है।
$(B)$ $O$ पर विभव शून्य है।
$(C)$ लाइन $PR$ पर सब जगह विभव समान है।
$(D)$ लाइन $ST$ पर सब जगह विभव समान है।
$10$ सेमी और $15$ सेमी त्रिज्या के आवेशित गोलाकारों को पतले तार से संयोजित करने पर कोई धारा प्रवाह नहीं होती है, यदि
मान लें व्योम में एक विध्युत क्षेत्र $\vec{E}=30 x^{2} \hat{i}$ है। तब विभवान्तर $V_{A}-V_{O}$ जहाँ $V_{O}$ मूलबिन्दु पर विभव एवं $V_{A}, x=2 \,m$ पर विभव ....$V$ है।
$R$ त्रिज्या के एक खोखले धात्विक गोले को $Q$ आवेश दिया गया है। इसके केन्द्र पर विभव होगा
$N$ एकसमान गोलीय बूँदें जो समान विभव $V$ तक आवेशित है, मिलकर एक बड़ी बूँद बनाती है। नई बूँद का विभव होगा