આકૃતિમાં બતાવેલ બે અનંત પાતળા સમતલની પૃષ્ઠ વિદ્યુતભાર ઘનતા $\sigma$ છે. તો ત્રણ જુદા જુદા પ્રદેશ $E_{ I }, E_{ II }$ અને $E_{III}$ માં વિદ્યુતક્ષેત્ર કેટલું મળે?

218095-q

  • [JEE MAIN 2023]
  • A

    $\vec{E}_{ I }=\frac{2 \sigma}{\epsilon_0} \hat{n}, \vec{E}_{ II }=0, \vec{E}_{ III }=\frac{2 \sigma}{\epsilon_0} \hat{n}$

  • B

    $\vec{E}_{ I }=0, \vec{E}_{ II }=\frac{\sigma}{\epsilon_0} \hat{n}, \vec{E}_{ III }=0$

  • C

    $\vec{E}_{ I }=\frac{\sigma}{2 \epsilon_0} \hat{n}, \vec{E}_{\text {II }}=0, \vec{E}_{ III }=\frac{\sigma}{2 \epsilon_0} \hat{n}$

  • D

    $\vec{E}_{ I }=-\frac{\sigma}{\epsilon_0} \hat{n}, \vec{E}_{\text {II }}=0, \vec{E}_{\text {III }}=\frac{\sigma}{\epsilon_0} \hat{n}$

Similar Questions

પોલા વાહક ગોળાની સપાટી પર $10\,\mu C$ વિધુતભાર આપવામાં આવે છે. જો ત્રિજ્યા $2\, m$ હોય, તો કેન્દ્ર પર વિદ્યુતક્ષેત્ર કેટલા........$\mu \,C{m^{ - 2}}$ થાય?

  • [AIPMT 1998]

$R$ ત્રિજયાના ગોળા પર $2Q$ જેટલો કુલ વિદ્યુતભાર છે જેની વિદ્યુતભાર ઘનતા $\rho(r) = kr$ જ્યાં $r$ એ કેન્દ્રથી અંતર છે. બે વિદ્યુતભાર $A$અને $B$ જેનો વિદ્યુતભાર $-Q$ છે તેને ગોળાના વ્યાસ પર કેન્દ્ર થી સમાન અંતર પર છે. જો $A$ અને $B$ પર કોઈ બળ લાગતું ના હોય તો.....

  • [JEE MAIN 2019]

$R$ ત્રિજ્યાના એક અવાહક ગોળાના કદ પર વિદ્યુતભાર $Q$ સમાન રીતે વિતરણ પામેલો છે. $b$ ત્રિજ્યા $(b > R)$ ની પાતળી ધાતુની કવચ વડે ગોળાની આજુબાજુ $-Q$ વિદ્યુતભાર છે. કવચ અને ગોળા વચ્ચેની જગ્યા હવાથી ભરેલી છે. નીચેના પૈકી કયો આલેખ વિદ્યુતક્ષેત્રને સંલગ્ન સાચી રજૂઆત દર્શાવે છે ?

પૃષ્ઠભાર ધનતા $+\sigma$ ધરાવતી સમાન રીતે ભારિત અનંત સમતલીય તકતી $S$ ના વિદ્યુત ક્ષેત્રની અસર હેડળ ઇલેકટ્રોન ગતિ કરે છે. તે $t=0$ સમયે $S$ થી $1 \mathrm{~m}$ ના અંતરે છે અને $1 \mathrm{~m} / \mathrm{s}$ ઝડપ ધરાવે છે. જો ઇલેકટ્રોન $t=1$ વખતે $s$ પર અથડાય ત્યારે $\sigma$ નું મહત્તમ મૂલ્ય $\alpha\left[\frac{m \epsilon_0}{e}\right] \frac{C}{m^2}$ થાય છ, તો $\alpha$ નું મૂલ્ય છે.

  • [JEE MAIN 2024]

$R$ ત્રિજ્યાનો અવાહક ધન ગોળો સમાન રીતે વિદ્યુતભારીત થયેલો છે. તેના કેન્દ્રથી $r$ અંતરે આવેલ ગોળાને લીધે વિદ્યુતક્ષેત્રનું મૂલ્ય ........ છે.

$(1)\, r$ ના વધારા સાથે વધે છે $r < R \,$

$(2)\, r$ ના વધારા સાથે ઘટશે $0 < r <$ $\infty$

$(3)\, r$ ના વધારા સાથે ઘટશે $R < r < \infty \,$

$(4)\, r = R$ આગળ તે સતત છે.