Let $y = f (x)$ and $y = g (x)$ be two differentiable function in $[0,2]$ such that  $f(0) = 3,$ $f(2) = 5$ , $g (0) = 1$ and $g(2) = 2$. If there exist atlellst one $c \in \left( {0,2} \right)$ such that $f'(c)=kg'(c)$,then $k$ must be

  • A

    $2$

  • B

    $3$

  • C

    $\frac{1}{2}$

  • D

    $1$

Similar Questions

If the function $f(x) = {x^3} - 6a{x^2} + 5x$ satisfies the conditions of Lagrange's mean value theorem for the interval $[1, 2] $ and the tangent to the curve $y = f(x) $ at $x = {7 \over 4}$ is parallel to the chord that joins the points of intersection of the curve with the ordinates $x = 1$ and $x = 2$. Then the value of $a$ is

Suppose that $f (0) = - 3$ and $f ' (x) \le 5$ for all values of $x$. Then the largest value which $f (2)$ can attain is

Let $f: R \rightarrow R$ be a differentiable function such that $f(a)=0=f(b)$ and $f^{\prime}(a) f^{\prime}(b) > 0$ for some $a < b$. Then, the minimum number of roots of $f^{\prime}(x)=0$ in the interval $(a, b)$ is

  • [KVPY 2010]

Let $\mathrm{f}$ be any continuous function on $[0,2]$ and twice differentiable on $(0,2)$. If $\mathrm{f}(0)=0, \mathrm{f}(1)=1$ and $f(2)=2$, then

  • [JEE MAIN 2021]

If $f$ and $g$ are differentiable functions in $[0, 1]$ satisfying $f\left( 0 \right) = 2 = g\left( 1 \right)\;,\;\;g\left( 0 \right) = 0,$ and $f\left( 1 \right) = 6,$ then for some $c \in \left] {0,1} \right[$  . .

  • [JEE MAIN 2014]