एक फलन $\mathrm{f}: \mathbb{N} \rightarrow \mathbb{R}$, के लिए $\mathrm{f}(1)+2 \mathrm{f}(2)+3 \mathrm{f}(3)+\ldots+\mathrm{xf}(\mathrm{x})=\mathrm{x}(\mathrm{x}+1) \mathrm{f}(\mathrm{x}) ;$ $\mathrm{x} \geq 2$ तथा $\mathrm{f}(1)=1$ है तो $\frac{1}{\mathrm{f}(2022)}+\frac{1}{\mathrm{f}(2028)}$ बराबर है

  • [JEE MAIN 2023]
  • A

    $8200$

  • B

    $8000$

  • C

    $8400$

  • D

    $8100$

Similar Questions

माना $\mathrm{S}=\{1,2,3,4,5,6\}$ है तो ऐसे ऐकेकी फलनों $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{P}(\mathrm{S})$, जहाँ $\mathrm{P}(\mathrm{S})$ समुच्चय $\mathrm{S}$ का घात समुच्चय $\mathrm{f}(\mathrm{n}) \subset \mathrm{f}(\mathrm{m})$ है जब भी $\mathrm{n}<\mathrm{m}$ है, की संख्या है_______. 

  • [JEE MAIN 2023]

सिद्ध कीजिए कि $f: R \rightarrow\{x \in R :-1 < x < 1\}$ जहाँ $f(x)=\frac{x}{1+|x|}, x \in R$ द्वारा

परिभाषित फलन एकैकी तथा आच्छादक है ।

यदि $f(x + ay,\;x - ay) = axy$, तब $f(x,\;y) =$

$\mathrm{f}(\mathrm{n})+\frac{1}{\mathrm{n}} \mathrm{f}(\mathrm{n}+1)=1, \forall \mathrm{n} \in\{1,2,3\}$

को संतुष्ट करने वाले फलनों

$\mathrm{f}:\{1,2,3,4\} \rightarrow\{\mathrm{a} \in \mathbb{Z}|\mathrm{a}| \leq 8\}$

की संख्या है -

  • [JEE MAIN 2023]

माना $S =\{1,2,3,4\}$ है। तब समुच्चय \{f: $S \times S \rightarrow S : f$ आच्छादक तथा $f ( a , b )= f ( b , a \geq a \forall( a , b ) \in S \times S \}$ में अवयवों की संख्या है

  • [JEE MAIN 2022]