Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$\sqrt{\frac{1+\sin A }{1-\sin A }}=\sec A +\tan A$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\sqrt{\frac{1+\sin A }{1-\sin A }}=\sec A +\tan A$

$L.H.S.=\sqrt{\frac{1+\sin A }{1-\sin A }}$

$=\sqrt{\frac{(1+\sin A )(1+\sin A )}{(1-\sin A )(1+\sin A )}}$

$=\frac{(1+\sin A )}{\sqrt{1-\sin ^{2} A }}=\frac{1+\sin A }{\sqrt{\cos ^{2} A }}$

$=\frac{1+\sin A }{\cos A } \quad=\sec A +\tan A$

$= R . H.S.$

Similar Questions

$\frac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}=$

Evaluate the following:

$\frac{\sin 30^{\circ}+\tan 45^{\circ}-\operatorname{cosec} 60^{\circ}}{\sec 30^{\circ}+\cos 60^{\circ}+\cot 45^{\circ}}$

Express $\sin 67^{\circ}+\cos 75^{\circ}$ in terms of trigonometric ratios of angles between $0^{\circ}$ and $45^{\circ}$

Show that:

$(i)$ $\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ}=1$

$(ii)$ $\cos 38^{\circ} \cos 52^{\circ}-\sin 38^{\circ} \sin 52^{\circ}=0$

Given $\sec \theta=\frac{13}{12},$ calculate all other trigonometric ratios.