If ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .......... + {C_n}{x^2},$ then $C_0^2 + C_1^2 + C_2^2 + C_3^2 + ...... + C_n^2$ =
$\frac{{n!}}{{n!n!}}$
$\frac{{(2n)!}}{{n!n!}}$
$\frac{{(2n)!}}{{n!}}$
None of these
If ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .......... + {C_n}{x^n}$, then $\frac{{{C_1}}}{{{C_0}}} + \frac{{2{C_2}}}{{{C_1}}} + \frac{{3{C_3}}}{{{C_2}}} + .... + \frac{{n{C_n}}}{{{C_{n - 1}}}} = $
The coefficient of $x^{70}$ in $x^2(1+x)^{98}+x^3(1+x)^{97}+$ $x^4(1+x)^{96}+\ldots \ldots . .+x^{54}(1+x)^{46}$ is ${ }^{99} \mathrm{C}_p-{ }^{46} \mathrm{C}_{\mathrm{q}}$.
Then a possible value to $\mathrm{p}+\mathrm{q}$ is :
$\sum\limits_{n = 0}^4 {{{\left( {1009 - 2n} \right)}^4}\left( \begin{gathered}
4 \hfill \\
n \hfill \\
\end{gathered} \right)} {\left( { - 1} \right)^n}$ is
The coefficient of $x^{4}$ in the expansion of $\left(1+x+x^{2}+x^{3}\right)^{6}$ in powers of $x,$ is
If the sum of the coefficients of all the positive powers of $x$, in the binomial expansion of $\left(x^{n}+\frac{2}{x^{5}}\right)^{7}$ is $939 ,$ then the sum of all the possible integral values of $n$ is