Co-efficient of $\alpha ^t$ in the expansion of,
$(\alpha + p)^{m - 1} + (\alpha + p)^{m - 2} (\alpha + q) + (\alpha + p)^{m - 3} (\alpha + q)^2 + ...... (\alpha + q)^{m - 1}$
where $\alpha \ne - q$ and $p \ne q$ is :
$\frac{{^m{C_t}\,\,\left( {{p^t}\, - \,{q^t}} \right)}}{{p\, - \,q}}$
$\frac{{^m{C_t}\,\,\left( {{p^{m\, - \,t}}\, - \,{q^{m\, - \,t}}} \right)}}{{p\, - \,q}}$
$\frac{{^m{C_t}\,\,\left( {{p^t}\, + \,{q^t}} \right)}}{{p\, - \,q}}$
$\frac{{^m{C_t}\,\,\left( {{p^{m\, - \,t}}\, + \,{q^{m\, - \,t}}} \right)}}{{p\, - \,q}}$
Find the coefficient of $x^{49}$ in the expansion of $(2x + 1) (2x + 3) (2x + 5)----- (2x + 99)$
Let $(1 + x)^m = C_0 + C_1x + C_2x^2 + C_3x^3 + . . . . . +C_mx^m$, where $C_r ={}^m{C_r}$ and $A = C_1C_3 + C_2C_4+ C_3C_5 + C_4C_6 + . . . . . .. + C_{m-2}C_m$, then which is false
If $\frac{1}{n+1}{ }^n C_n+\frac{1}{n}{ }^n C_{n-1}+\ldots+\frac{1}{2}{ }^{ n } C _1+{ }^{ n } C _0=\frac{1023}{10}$ then $n$ is equal to
$\sum\limits_{k = 0}^{10} {^{20}{C_k} = } $
If $\sum_{r=1}^{10} r !\left( r ^{3}+6 r ^{2}+2 r +5\right)=\alpha(11 !),$ then the value of $\alpha$ is equal to ...... .