If $\sum_{r=1}^{10} r !\left( r ^{3}+6 r ^{2}+2 r +5\right)=\alpha(11 !),$ then the value of $\alpha$ is equal to ...... .

  • [JEE MAIN 2021]
  • A

    $180$

  • B

    $148$

  • C

    $160$

  • D

    $176$

Similar Questions

The value of $^{15}C_0^2{ - ^{15}}C_1^2{ + ^{15}}C_2^2 - ....{ - ^{15}}C_{15}^2$ is

If $C_{x} \equiv^{25} C_{x}$ and $\mathrm{C}_{0}+5 \cdot \mathrm{C}_{1}+9 \cdot \mathrm{C}_{2}+\ldots .+(101) \cdot \mathrm{C}_{25}=2^{25} \cdot \mathrm{k}$ then $\mathrm{k}$ is equal to

  • [JEE MAIN 2020]

The sum of the co-efficients of all odd degree terms in the expansion of  ${\left( {x + \sqrt {{x^3} - 1} } \right)^5} + {\left( {x - \sqrt {{x^3} - 1} } \right)^5},\left( {x > 1} \right)$ 

  • [JEE MAIN 2018]

The sum of coefficients in ${(1 + x - 3{x^2})^{2134}}$ is

The sum of the series $\left( {\begin{array}{*{20}{c}}{20}\\0\end{array}} \right) - \left( {\begin{array}{*{20}{c}}{20}\\1\end{array}} \right)$$+$$\left( {\begin{array}{*{20}{c}}{20}\\2\end{array}} \right) - \left( {\begin{array}{*{20}{c}}{20}\\3\end{array}} \right)$$+…..-……+$$\left( {\begin{array}{*{20}{c}}{20}\\{10}\end{array}} \right)$ 

  • [AIEEE 2007]