वृत्त ${x^2} + {y^2} + 2gx + 2fy = 0$ तथा ${x^2} + {y^2} + 2g'x + 2f'y = 0$ बाह्यत: स्पर्श करते हैं यदि
$f'g = g'f$
$fg = f'g'$
$f'g' + fg = 0$
$f'g + g'f = 0$
यदि दो वृत्त $2{x^2} + 2{y^2} - 3x + 6y + k = 0$ तथा ${x^2} + {y^2} - 4x + 10y + 16 = 0$ एक दूसरे को लम्बवत् काटते हैं, तब $k$ का मान है
यदि रेखा $y = 2x$ वृत्त ${x^2} + {y^2} - 10x = 0$ की एक जीवा हो तो इस जीवा को व्यास मानकर खींचे गये वृत्त का समीकरण होगा[
यदि तीन समाक्ष वृत्तों के केन्द्र $P, Q, R$ एवं त्रिज्यायें क्रमश: ${r_1},\,\,{r_2},\,\,{r_3}$ हों, तो $QRr_1^2 + RP\,r_2^2 + PQr_3^2 = $
वृत्तों ${x^2} + {y^2} - 8x - 2y + 7 = 0$ व ${x^2} + {y^2} - 4x + 10y + 8 = 0$ के प्रतिच्छेद बिन्दुओं से गुजरने वाले एवं $y$ - अक्ष पर केन्द्र वाले वृत्त का समीकरण है
मान लें कि त्रिज्या $2$ के दो वृत्त एक समतल पर इस प्रकार है कि उनके केन्द्रों के बीच की दूरी $2 \sqrt{3}$ है। तब दोनों वृत्तों के उभयनिष्ट क्षेत्र का क्षेत्रफल निम्नांकित संख्याओं के बीच में है।