વર્તુળો ${x^2} + {y^2} - 2x - 4y = 0$ અને ${x^2} + {y^2} - 8y - 4 = 0$ એ. . . .
અંદરની બાજુએ સ્પર્શે
બહારની બાજુએ સ્પર્શે
બે બિંદુઓ માં છેદે છે
એકપણ નહીં.
જો બે વર્તૂળો $ (x - 1)^2 + (y - 3)^2 = r^2 $ અને $x^2 + y^2 - 8x + 2y + 8 = 0$ બે ભિન્ન બિંદુઓમાં છેદે, તો.....
વર્તૂળ $x^2 + y^2 = 4$ અને $x^2 + y^2 - 6x - 8y = 24 $ ના સામાન્ય સ્પર્શકોની સંખ્યા ....
વિધાન $(A) :$ જો બે વર્તૂળો $ x^2 + y^2 + 2gx + 2fy = 0 $ અને $ x^2 + y^2 + 2gx + 2fy = 0 $ એકબીજાને સ્પર્શેં, તો $f'g = fg'$
કારણ $(R) :$ જો તેમના કેન્દ્રોને જોડતી રેખા બધા જ શક્ય સામાન્ય સ્પર્શકોને લંબ હોય, તો બે વર્તૂળો એકબીજાને સ્પર્શેં.
બિંદુ $(a, b)$ માંથી પસાર થતા તથા વર્તૂળ ${x^2} + {y^2} = {p^2}$ ને લંબચ્છેદી હોય તેવા વર્તૂળના કેન્દ્રનો બિંદુગણનું સમીકરણ મેળવો.
જો વર્તૂળો $ x^2 + y^2 + 2x + 2ky + 6 = 0$ અને $ x^2 + y^2 + 2ky + k = 0 $ લંબરૂપે છેદે, તો $k = ..........$