નીચેની ખાલી જગ્યા પૂરો :
$(a)$ દ્રઢ પદાર્થનો યંગ મોડ્યુલસ ...... હોય છે.
$(b)$ એક તાર પર $10^8\,Nm^{-2}$ જેટલું પ્રતિબળ મળતાં તેની લંબાઈ મૂળ લંબાઈ કરતાં $10^{-6}$ ગણી હોય, તો તેનો યંગ મોડ્યુલસ ....
$(c)$ સ્ટીલ માટે પોઇસન ગુણોત્તરનું મૂલ્ય ... છે.
$(a)$અનંત.
દઢ પદાર્થમાં વિકૃતિ થતી નથી.
તેથી યંગ મોડ્યુલસ $=$પ્રતિબળ / વિકૃતિ $=$ પ્રતિબળ \ $0$
અનંત
$(b)$$10^{14} \mathrm{Nm}^{-2}$
$\mathrm{Y}=\frac{\text { Stress }}{\frac{\Delta l}{l}}=\frac{10^{8}}{10^{-6}}=10^{14} \mathrm{Nm}^{-2}$
$(c)$
$0.28$ થી $0.30$
સ્ટીલનો તાર તૂટ્યા વગર $100\,kg$ વજન ખમી શકે છે જો તારાને બે ભાગમાં વિભાજિત કરવામાં આવે તો દરેક ભાગ ...... $kg$ વજન ખામી શકે.
$1.0\, m$ લંબાઈ અને $0.50 \times 10^{-2}\, cm^2$ આડછેદનું ક્ષેત્રફળ ધરાવતાં નરમ સ્ટીલના તારને બે થાંભલાની વચ્ચે સમક્ષિતિજ દિશામાં સ્થિતિસ્થાપકતાની હદ (મર્યાદા)માં રહે તેમ ખેંચવામાં આવે છે. હવે તારના મધ્યબિંદુએ $100\, g$ દળ લટકાવવામાં આવે, તો તારનું મધ્યબિંદુ કેટલું નીચે આવશે ?
યંગ મોડ્યુલસના પ્રયોગમાં જો તારની લંબાઈ અને ત્રિજ્યા બમણી કરી દેવામાં આવે તો $Y$ નું મૂલ્ય ...
$\alpha {/^o}C$ રેખીય પ્રસરણાંક ધરાવતી ધાતુમાંથી $L$ લંબાઈ અને $A$ આડછેદ ધરાવતા એક ધાતુના સળીયાને ઓરડાના તાપમાને બનાવવામાં આવે છે. એવું જોવા મળ્યું કે જ્યારે સળીયાના બન્ને છેડા પર બાહ્ય દબનીય બળ $F$ લગાવી તેનું તાપમાન $\Delta T\, K$ કેલ્વિન જેટલું વધારવામાં આવે તો પણ સળીયાની લંબાઇમાં કોઇ ફેરફાર થતો નથી.આ ધાતુ માટે યંગ મોડ્યુલસ $Y$ કેટલો હશે?
$4.7\, m$ લંબાઈ અને $3.0 \times 10^{-5}\, m^2$ આડછેદનું ક્ષેત્રફળ ધરાવતો સ્ટીલનો તાર તથા $3.5\, m$ લંબાઈ અને $4.0 \times 10^{-5}\, m^2$ આડછેદનું ક્ષેત્રફળ ધરાવતા તાંબાના તાર પર આપેલ સમાન ભાર લટકાવતા બંને તારની લંબાઈમાં સમાન વધારો થાય છે, તો સ્ટીલ અને તાંબાનાં યંગ મૉડ્યુલસનો ગુણોત્તર શું હશે ?