check the statment are True or False $:$

$(a)$ Young’s modulus of rigid body is .....

$(b)$ A wire increases by $10^{-6}$​ times its original length when a stress of
$10^8\,Nm^{-2}$ is applied to it, calculate its Young’s modulus.

$(c)$ The value of Poisson’s ratio for steel is ......

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(1)$ Infinite.

There is no strain in rigid body.

$\text { hence Young's modulus } =\frac{\text { stress }}{\text { strain }}=\frac{\text { stress }}{0}$

$=\text { infinite }$

$(2)$ $10^{14} \mathrm{Nm}^{2}$

$\mathrm{Y}=\frac{\text { Stress }}{\frac{\Delta l}{l}}=\frac{10^{8}}{10^{-6}}=10^{14} \mathrm{Nm}^{-2}$

$(3)$ $0.28$ to $0.30$

Similar Questions

Two wires $A$ and $B$ of same material have radii in the ratio $2: 1$ and lengths in the ratio $4: 1$. The ratio of the normal forces required to produce the same change in the lengths of these two wires is .......

To determine Young's modulus of a wire, the formula is $Y = \frac{F}{A}.\frac{L}{{\Delta L}}$ where $F/A$ is the stress and $L/\Delta L$ is the strain. The conversion factor to change $Y$ from $CGS$ to $MKS$ system is

A wire of length $L$ and radius $r$  is clamped rigidly at one end. When the other end of the wire is pulled by a force $f$ its length increases by $l$. Another wire of the same material of length $2L$ and radius $2r$  is pulled by a force $2f$. Then find the increase in length of this wire.

A wire of length $L$ and radius $r$ is clamped rigidly at one end. When the other end of the wire is pulled by a force $F$, its length increases by $5\,cm$. Another wire of the same material of length $4 L$ and radius $4\,r$ is pulled by a force $4\,F$ under same conditions. The increase in length of this wire is $....cm$.

  • [JEE MAIN 2022]

A uniform plank of Young’s modulus $Y $ is moved over a smooth horizontal surface by a constant horizontal force $F.$ The area of cross section of the plank is $A.$ The compressive strain on the plank in the direction of the force is