By using Coulomb’s law, define unit charge.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

In $SI$, the unit of charge is Coulomb.

Putting value of $q_{1}=q_{2}=1 \mathrm{C}, r=1 \mathrm{~m}$ in $\mathrm{F}=k \frac{q_{1} q_{2}}{r^{2}}$, then $\mathrm{F}=\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} \mathrm{~N}$

Definition of $1 \mathrm{C}: 1 \mathrm{C}$ is the charge that when placed at a distance of $1 \mathrm{~m}$ from another charge of the same magnitude in vacuum experiences an electrical force of repulsion of magnitude $9 \times 10^{9} \mathrm{~N}$.

Similar Questions

The charges on two sphere are $+7\,\mu C$ and $-5\,\mu C$ respectively. They experience a force $F$. If each of them is given and additional charge of $-2\,\mu C$, the new force of attraction will be

Two small conducting spheres of equal radius have charges $ + 10\,\mu C$ and $ - 20\,\mu C$ respectively and placed at a distance $R$ from each other experience force ${F_1}$. If they are brought in contact and separated to the same distance, they experience force ${F_2}$. The ratio of ${F_1}$ to ${F_2}$ is

Three charges each of magnitude $q$ are placed at the corners of an equilateral triangle, the electrostatic force on the charge placed at the center is (each side of triangle is $L$)

A charge $q$ is placed at the centre of the line joining two equal charges $Q$. The system of the three charges will be in equilibrium, if $q$ is equal to

  • [IIT 1987]

The distance between charges $5 \times {10^{ - 11}}\,C$ and $ - 2.7 \times {10^{ - 11}}\,C$ is $0.2\, m$. The distance at which a third charge should be placed in order that it will not experience any force along the line joining the two charges is......$m$