At what angle must the two forces $(x + y)$ and $(x -y)$ act so that the resultant may be $\sqrt {({x^2} + {y^2})} $

  • A

    ${\cos ^{ - 1}}\left( { - \frac{{{x^2} + {y^2}}}{{2({x^2} - {y^2})}}} \right)$

  • B

    ${\cos ^{ - 1}}\left( { - \frac{{2({x^2} - {y^2})}}{{{x^2} + {y^2}}}} \right)$

  • C

    ${\cos ^{ - 1}}\left( { - \frac{{{x^2} + {y^2}}}{{{x^2} - {y^2}}}} \right)$

  • D

    ${\cos ^{ - 1}}\left( { - \frac{{{x^2} - {y^2}}}{{{x^2} + {y^2}}}} \right)$

Similar Questions

If the magnitude of sum of two vectors is equal to the magnitude of difference of the two vectors, the angle between these vectors is ........ $^o$

  • [NEET 2016]

Which of the following forces cannot be a resultant of $5\, N$ and $7\, N$ force...........$N$

A body moves due East with velocity $20\, km/hour$ and then due North with velocity $15 \,km/hour$. The resultant velocity..........$km/hour$

The sum of three forces ${\vec F_1} = 100\,N,{\vec F_2} = 80\,N$ and ${\vec F_3} = 60\,N$ acting on a particle is zero. The angle between $\vec F_1$ and $\vec F_2$ is nearly .......... $^o$

Given below in Column $-I$ are the relations between vectors $\vec a \,$ $\vec b \,$ and $\vec c \,$ and in Column $-II$ are the orientations of $\vec a$, $\vec b$ and $\vec c$ in the $XY-$ plane. Match the relation in Column $-I$ to correct orientations in Column $-II$.

  Column $-I$   Column $-II$
$(a)$ $\vec a \, + \,\,\vec b \, = \,\,\vec c $ $(i)$ Image
$(b)$ $\vec a \, - \,\,\vec c \, = \,\,\vec b$ $(ii)$ Image
$(c)$ $\vec b \, - \,\,\vec a \, = \,\,\vec c $ $(iii)$ Image
$(d)$ $\vec a \, + \,\,\vec b \, + \,\,\vec c =0$ $(iv)$ Image