Given below in Column $-I$ are the relations between vectors $\vec a \,$ $\vec b \,$ and $\vec c \,$ and in Column $-II$ are the orientations of $\vec a$, $\vec b$ and $\vec c$ in the $XY-$ plane. Match the relation in Column $-I$ to correct orientations in Column $-II$.
Column $-I$ | Column $-II$ |
$(a)$ $\vec a \, + \,\,\vec b \, = \,\,\vec c $ | $(i)$ Image |
$(b)$ $\vec a \, - \,\,\vec c \, = \,\,\vec b$ | $(ii)$ Image |
$(c)$ $\vec b \, - \,\,\vec a \, = \,\,\vec c $ | $(iii)$ Image |
$(d)$ $\vec a \, + \,\,\vec b \, + \,\,\vec c =0$ | $(iv)$ Image |
Consider the below given diagram in which vectors $A$ and $B$ are connected by head and tail.
Resultant vector $\overrightarrow{\mathrm{C}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}$
$(a)$ from $(iv)$ it is clear that $\mathrm{c}=\mathrm{a}+\mathrm{b}$
$(iv)$ matches with $(a)$
$(b)$ from (iii) $\mathrm{c}+\mathrm{b}=\mathrm{a}$
$ \Rightarrow \mathrm{a}-\mathrm{c}=\mathrm{b}$
$(iii)$ matches with $(b)$
$(c)$ from $(i)$ $\mathrm{b}=\mathrm{a}+\mathrm{c} \Rightarrow \mathrm{b}-\mathrm{a}=\mathrm{c}$
$(ii)$ matches with $(d)$
$(d)$ from (ii) $-\mathrm{c}=\mathrm{a}+\mathrm{b} \Rightarrow \mathrm{a}+\mathrm{b}+\mathrm{c}=0$
$(i)$ matches with $(c)$
Which of the four arrangements in the figure correctly shows the vector addition of two forces $\overrightarrow {{F_1}} $ and $\overrightarrow {{F_2}} $ to yield the third force $\overrightarrow {{F_3}} $
The magnitude of a given vector with end points $ (4, -4, 0)$ and $(-2, -2, 0)$ must be
Two forces of magnitude $P$ & $Q$ acting at a point have resultant $R$. The resolved part of $R$ in the direction of $P$ is of magnitude $Q$. Angle between the forces is :
Which of the following quantity/quantities are dependent on the choice of orientation of the co-ordinate axes?
$(a)$ $\vec{a}+\vec{b}$
$(b)$ $3 a_x+2 b_y$
$(c)$ $(\vec{a}+\vec{b}-\vec{c})$
If a particle moves from point $P (2,3,5)$ to point $Q (3,4,5)$. Its displacement vector be