Assume that $P(A)=P(B) .$ Show that $A=B$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $P(A)=P(B)$

To show: $A=B$

Let $x \in A$

$A \in P(A)=P(B)$

$\therefore x \in C,$ for some $C \in P(B)$

Now, $C \subset B$

$\therefore x \in B$

$\therefore A \subset B$

Similarly, $B \subset A$

$\therefore A=B$

Similar Questions

Let $A=\{1,2,3,4,5,6\} .$ Insert the appropriate symbol $\in$ or $\notin$ in the blank spaces:

$ 2 \, ....... \, A $

Write the following sets in the set-builder form :

$\{ 3,6,9,12\}$

Match each of the set on the left described in the roster form with the same set on the right described in the set-builder form:

$(i)$  $\{ P,R,I,N,C,A,L\} $ $(a)$  $\{ x:x$ is a positive integer and is adivisor of $18\} $
$(ii)$  $\{ \,0\,\} $ $(b)$  $\{ x:x$ is an integer and ${x^2} - 9 = 0\} $
$(iii)$  $\{ 1,2,3,6,9,18\} $ $(c)$  $\{ x:x$ is an integer and $x + 1 = 1\} $
$(iv)$  $\{ 3, - 3\} $ $(d)$  $\{ x:x$ is aletter of the word $PRINCIPAL\} $

 

Let $A=\{1,2,\{3,4\}, 5\} .$ Which of the following statements are incorrect and why ?

$\varnothing \in A$

Are the following pair of sets equal ? Give reasons.

$A = \{ x:x$ is a letter in the word ${\rm{FOLLOW }}\} $

$B = \{ y:y$ is a letter in the word $WOLF\} $