Assertion $A$ : If $A, B, C, D$ are four points on a semi-circular arc with centre at $'O'$ such that $|\overrightarrow{{AB}}|=|\overrightarrow{{BC}}|=|\overrightarrow{{CD}}|$, then $\overrightarrow{{AB}}+\overrightarrow{{AC}}+\overrightarrow{{AD}}=4 \overrightarrow{{AO}}+\overrightarrow{{OB}}+\overrightarrow{{OC}}$
Reason $R$ : Polygon law of vector addition yields $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C D}+\overrightarrow{A D}=2 \overrightarrow{A O}$
In the light of the above statements, choose the most appropriate answer from the options given below
Both $A$ and $R$ are correct and $R$ is the correct explanation of $A$.
$A$ is not correct but $R$ is correct.
Both $A$ and $R$ are correct but $R$ is not the correct explanation of $A$.
$A$ is correct but $R$ is not correct.
Two vectors $\vec A$ and $\vec B$ have equal magnitudes. The magnitude of $(\vec A + \vec B)$ is $‘n’$ times the magnitude of $(\vec A - \vec B)$. The angle between $ \vec A$ and $\vec B$ is
Two forces of $12 \,N$ and $8 \,N$ act upon a body. The resultant force on the body has maximum value of........$N$
The resultant of two vectors $A$ and $B$ is perpendicular to the vector $A$ and its magnitude is equal to half the magnitude of vector $B$. The angle between $A$ and $B$ is ....... $^o$
The three vectors $\overrightarrow A = 3\hat i - 2\hat j + \hat k,\,\,\overrightarrow B = \hat i - 3\hat j + 5\hat k$ and $\overrightarrow C = 2\hat i + \hat j - 4\hat k$ form