The three vectors $\overrightarrow A = 3\hat i - 2\hat j + \hat k,\,\,\overrightarrow B = \hat i - 3\hat j + 5\hat k$ and $\overrightarrow C = 2\hat i + \hat j - 4\hat k$ form

  • A

    An equilateral triangle

  • B

    Isosceles triangle

  • C

    A right angled triangle

  • D

    No triangle

Similar Questions

The sum of two forces acting at a point is $16\, N.$ If the resultant force is $8\, N$ and its direction is perpendicular to minimum force then the forces are

Let $\overrightarrow C = \overrightarrow A  + \overrightarrow B$

$(A)$ It is possible to have $| \overrightarrow C | < | \overrightarrow A |$ and $ | \overrightarrow C | < | \overrightarrow B|$

$(B)$ $|\overrightarrow C |$  is always greater than $|\overrightarrow A |$

$(C)$ $|\overrightarrow C |$ may be equal to $|\overrightarrow A | + |\overrightarrow B|$

$(D)$ $|\overrightarrow C |$ is never equal to $|\overrightarrow A | + |\overrightarrow B|$

Which of the above is correct

In an octagon $ABCDEFGH$ of equal side, what is the sum of $\overrightarrow{ AB }+\overrightarrow{ AC }+\overrightarrow{ AD }+\overrightarrow{ AE }+\overrightarrow{ AF }+\overrightarrow{ AG }+\overrightarrow{ AH }$ if, $\overrightarrow{ AO }=2 \hat{ i }+3 \hat{ j }-4 \hat{ k }$

  • [JEE MAIN 2021]

On an open ground, a motorist follows a track that turns to his left by an angle of $60^{°}$ after every $500\; m$. Starting from a given turn, specify the displacement of the motorist at the third, sixth and eighth turn. Compare the magnitude of the displacement with the total path length covered by the motorist in each case.

The angle between vector $(\overrightarrow{{A}})$ and $(\overrightarrow{{A}}-\overrightarrow{{B}})$ is :

  • [JEE MAIN 2021]