વક્ર $\frac{|\mathrm{x}|}{2}+\frac{|\mathrm{y}|}{3}=1$ ની બહારની બાજુના પ્રદેશ અને ઉપવલય $\frac{\mathrm{x}^{2}}{4}+\frac{\mathrm{y}^{2}}{9}=1$ ની અંદરની બાજુના પ્રદેશથી રચાતા વિસ્તારનું ક્ષેત્રફળ .......ચો.એકમ થાય
$3(4-\pi)$
$6(\pi-2)$
$3(\pi-2)$
$6(4-\pi)$
ઉપવલય $\frac{{{x^2}}}{9}\,\, + \,\,\frac{{{y^2}}}{4}\,\, = 1$ ની જીવા $PQ$ તેના કેન્દ્ર આગળ કાટખૂણે છે. $P$ અને $Q$ આગળ દોરેલા સ્પર્શકોના છેદબિંદુના બિંદુપથ કેવો હોય ?
જેનું કેન્દ્ર ઊગમબિંદુ આગળ છે એવા ઉપવલયની ઉત્કેન્દ્રતા $\frac{1}{2}$ છે. જો તેની એક નિયામીકા $x = - 4$ હોય,તો $\left( {1,\frac{3}{2}} \right)$ આગળ તેના અભિલંબનું સમીકરણ . . . છે. .
ઉપવલય ${E_1}\,\,:\,\,\frac{{{x^2}}}{9}\,\, + \;\,\frac{{{x^2}}}{4}\, = \,\,1$એ લંબચોરસ $R$ કે જેની બાજુઓ યામાક્ષોને સમાંતર હોય તેની અંદર આવેલ છે બીજુ ઉપવલય $E_2\ (0, 4)$ તો ઉપવલય $E_2$ ની ઉત્કેન્દ્રતા :
આપેલ ઉપવલય માટે નાભિના યામ, શિરોબિંદુઓ તથા પ્રધાન અક્ષ તથા ગૌણ અક્ષની લંબાઈ, ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ શોધોઃ
$\frac{x^{2}}{4}+\frac{y^2} {25}=1$.
બિંદુ $P\ (3, 4)$ માંથી ઉપવલય $\frac{{{x^2}}}{9}\,\, + \;\,\frac{{{y^2}}}{4}\,\, = \,\,1$પર દોરેલા સ્પર્શકો ઉપવલયને બિંદુઓ $A$ અને $B$ આગળ સ્પર્શ છે.$A$ અને $B$ ના યામ મેળવો.