બિંદુ $P\ (3, 4)$ માંથી ઉપવલય $\frac{{{x^2}}}{9}\,\, + \;\,\frac{{{y^2}}}{4}\,\, = \,\,1$પર દોરેલા સ્પર્શકો ઉપવલયને બિંદુઓ $A$ અને $B$ આગળ સ્પર્શ છે.$A$ અને $B$ ના યામ મેળવો.
$(3, 0)$ અને $(0, 2)$
$\left( {{\rm{ - }}\frac{{\rm{8}}}{{\rm{5}}},\,\,\frac{{2\,\,\sqrt {161} }}{{15}}} \right)$ અને $\left( {{\rm{ - }}\frac{{\rm{9}}}{{\rm{5}}},\,\,\frac{8}{5}} \right)$
$\left( {{\rm{ - }}\frac{{\rm{8}}}{{\rm{5}}},\,\,\frac{{2\,\,\sqrt {161} }}{{15}}} \right)\,$ અને $\,\left( {0,\,\,2} \right)$
$\,\left( {0,\,\,3} \right)$ અને $\left( {{\rm{ - }}\frac{{\rm{9}}}{{\rm{5}}},\,\,\frac{8}{5}} \right)$
ઉપવલય $x^2 + 2y^2 = 2$ ના નાભિલંબના અંત્યબિંદુઓ આગળના સ્પર્શક દ્વારા બનતા ચતુષ્કોણ નું ક્ષેત્રફળ મેળવો.
ઉપવલય $25(x + 1)^2 + 9 (y + 2)^2 = 225$ ની નાભિના યામ મેળવો.
જો ઉપવલય $3x^2 + 5y^2 = 32$ ના બિંદુ $P(2, 2)$ આગળના સ્પર્શક અને અભિલંબ $x-$ અક્ષને અનુક્રમે બિંદુ $Q$ અને $R$ આગળ છેદે તો ત્રિકોણ $PQR$ નું ક્ષેત્રફળ = ............. ચો એકમ
જો $P_1$ અને $P_2$ એ ઉપવલય $\frac{{{x^2}}}{4} + {y^2} = 1$ ના બે ભિન્ન બિંદુઓ છે જ્યાં તે બિંદુઓ આગળનો સ્પર્શક બિંદુ $(0, 1)$ અને $(2, 0)$ ને જોડતી જીવાને સમાંતર હોય તો બિંદુ $P_1$ અને $P_2$ વચ્ચેનું અંતર ......... થાય
જો $P (x, y), F_1 = (3, 0), F_2 (-3, 0) $ અને $16x^{2} + 25y^{2} = 400$ તો $PF_1 + PF_2 = …....$