An uncharged sphere of metal is placed in between two charged plates as shown. The lines of force look like

110-28

  • A

    $A$

  • B

    $B$

  • C

    $C$

  • D

    $D$

Similar Questions

An electric field $\overrightarrow{\mathrm{E}}=(2 \mathrm{xi}) \mathrm{NC}^{-1}$ exists in space. $\mathrm{A}$ cube of side $2 \mathrm{~m}$ is placed in the space as per figure given below. The electric flux through the cube is .................. $\mathrm{Nm}^2 / \mathrm{C}$

  • [JEE MAIN 2024]

A disk of radius $a / 4$ having a uniformly distributed charge $6 \mathrm{C}$ is placed in the $x-y$ plane with its centre at $(-a / 2,0,0)$. A rod of length $a$ carrying a uniformly distributed charge $8 \mathrm{C}$ is placed on the $x$-axis from $x=a / 4$ to $x=5 a / 4$. Two point charges $-7 \mathrm{C}$ and $3 \mathrm{C}$ are placed at $(a / 4,-a / 4,0)$ and $(-3 a / 4,3 a / 4,0)$, respectively. Consider a cubical surface formed by six surfaces $x= \pm a / 2, y= \pm a / 2$, $z= \pm a / 2$. The electric flux through this cubical surface is

  • [IIT 2009]

The electric field in a region is given by $\vec E = \frac{3}{5}{E_0}\hat i + \frac{4}{5}{E_0}\hat j$ and $E_0 = 2\times10^3\, N/C$. Then, the flux of this field through a rectangular surface of area $0.2\, m^2$ parallel to the $y-z$ plane is......$\frac{{N - {m^2}}}{C}$

For a given surface the Gauss's law is stated as $\oint {E \cdot ds} = 0$. From this we can conclude that

Given below are two statements:

Statement $I :$ An electric dipole is placed at the centre of a hollow sphere. The flux of electric field through the sphere is zero but the electric field is not zero anywhere in the sphere.

Statement $II :$ If $R$ is the radius of a solid metallic sphere and $Q$ be the total charge on it. The electric field at any point on the spherical surface of radius $r ( < R )$ is zero but the electric flux passing through this closed spherical surface of radius $r$ is not zero.

In the light of the above statements, choose the correct answer from the options given below:

  • [JEE MAIN 2021]